原文服务方: 微电子学与计算机       
摘要:
由于自动驾驶场景下拍摄的图像目标尺度变化剧烈和环境复杂多变,检测具有不小的难度;获取大量模型训练需要的标注数据图像存在困难,而获取大量未标注数据图像较容易.为了解决上述两个问题,提出一种基于半监督学习的 自动驾驶场景下的目标检测模型TransDet.首先,在特征提取部分提出一个具有全局注意力的MSADark模块,以提取图像更多的全局信息以及捕获远程依赖关系;其次在特征融合部分提出一个位置注意力加权特征融合网络LAFFN,用于不同特征融合层捕获局部的位置和通道信息,增强多层次特征加权融合和网络特征表示能力,缓解目标尺度剧烈变化的影响;最后提出一种简单高效的半监督学习算法框架EODS,高效利用未标注数据的同时进一步提升了模型性能.实验结果表明:改进模型在保证实时性的情况下,mAP@50精度从55.1%提升到了 61.6%,相比最新的YOLOv5模型精度增加了 6.5%,在保证实时的检测速度的同时提升模型检测性能.特别是在仅使用少量未标注数据的情况下使用半监督学习算法EODS将mAP.50性能提升至65.4%,提升达到10.3%,表明了该模型在自动驾驶场景下的目标检测的有效性.
推荐文章
基于一种多分类半监督学习算法的驾驶风格分类模型
驾驶风格
主成分分析
K-means聚类
支持向量机
多分类半监督学习算法
基于子空间半监督学习线性判别方法的目标跟踪技术研究
半监督学习
目标跟踪
增量线性判别分析
置信度
分类面
状态估计
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
基于无监督学习的行人检测算法
行人检测
无监督
稀疏编码
非线性变换
非极大值抑制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于半监督学习的自动驾驶场景下的目标检测
来源期刊 微电子学与计算机 学科 工学
关键词 目标检测 自动驾驶 注意力机制 特征融合 半监督学习
年,卷(期) 2023,(2) 所属期刊栏目 人工智能与算法
研究方向 页码范围 28-42
页数 15页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2023(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
自动驾驶
注意力机制
特征融合
半监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
论文1v1指导