基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将深度学习Faster R-CNN应用于列车轴承图像的表面缺陷检测.建立人工数据库BSD,通过对图像增广弥补数据不足的缺陷;采用Faster R-CNN算法进行目标检测和识别,卷积神经网络采用ZF Net模型,对BSD数据集训练,得到检测结果;并与传统检测方法Canny算法的检测结果进行比较.试验结果表明:和传统Canny算法比较,基于Faster R-CNN算法的轴承缺陷的检测精度为93.03%、检测时间为0.29 s,相比传统Canny算法检测精度提升21.73%、检测时间减少2.21 s,同时准确率大幅度提高,能够实现轴承表面缺陷的精确检测和识别,满足铁路部门对轴承检修的需求.
推荐文章
应用GAN和Faster R-CNN的色织物缺陷识别
色织物
图像扩充
生成对抗网络
FasterR-CNN
缺陷识别
基于DRN和Faster R-CNN融合模型的行为识别算法
行为识别
扩张残差网络
Faster R-CNN
基于Faster R-CNN的显著性目标检测方法
视觉显著性
目标检测
元胞自动机
超像素分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Faster R-CNN算法的列车轴承表面缺陷检测研究
来源期刊 机床与液压 学科
关键词 深度学习 缺陷检测 图像增广 卷积神经网络
年,卷(期) 2021,(11) 所属期刊栏目 试验与研究|TEST & RESEARCH
研究方向 页码范围 103-108
页数 6页 分类号 TH133.3|TP183|TN911.73
字数 语种 中文
DOI 10.3969/j.issn.1001-3881.2021.11.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (39)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(11)
  • 参考文献(3)
  • 二级参考文献(8)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(6)
  • 参考文献(1)
  • 二级参考文献(5)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
缺陷检测
图像增广
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机床与液压
半月刊
1001-3881
44-1259/TH
大16开
广州市黄埔区茅岗路828号
46-40
1973
chi
出版文献量(篇)
20801
总下载数(次)
44
总被引数(次)
104386
论文1v1指导