基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决不平衡数据在传统处理方法中容易出现数据的过拟合和欠拟合问题,提出基于统计信息聚类边界的不平衡数据分类方法.去除数据中噪声点,根据数据对象的k距离设定邻域半径,利用对象邻域范围内的k距离统计信息寻找边界点与非边界点;将少数类中的边界点作为样本,采用SMOTE算法进行过采样,对多数类采用基于距离的欠采样删除远离边界的点,得到平衡数集.通过实验结果对比,验证了该算法的G-mean值与F-value值都有提高.
推荐文章
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
基于AdaBoost的类不平衡学习算法
机器学习
类不平衡学习
集成学习
SMOTE
数据清理技术
基于证据理论的不平衡数据半监督分类方法
半监督分类
不平衡数据
证据理论
biased-SVM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于统计信息聚类边界的不平衡数据分类方法
来源期刊 计算机工程与设计 学科
关键词 不平衡数据 聚类 边界点 非边界点 采样
年,卷(期) 2021,(8) 所属期刊栏目 软件与算法|Software and Arithmetic
研究方向 页码范围 2218-2223
页数 6页 分类号 TP181
字数 语种 中文
DOI 10.16208/j.issn1000-7024.2021.08.017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (36)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(12)
  • 参考文献(0)
  • 二级参考文献(12)
2015(8)
  • 参考文献(4)
  • 二级参考文献(4)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(11)
  • 参考文献(4)
  • 二级参考文献(7)
2018(10)
  • 参考文献(3)
  • 二级参考文献(7)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
不平衡数据
聚类
边界点
非边界点
采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
论文1v1指导