基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱图像包含着丰富的光谱信息,单幅RGB重建高光谱图像在军事目标识别和医学诊断领域具有重要价值.传统算法无法对未知相机光谱响应的RGB图像进行重建,针对此问题,本文提出了一种基于改进残差密集网络的重建算法.首先,将改进的残差密集块作为残差密集网络的基本模块,使用自适应权重模块对特征通道进行特征重标定,使高光谱重建精度得到了提高.其次,用特征变换层替代原来网络的空间变换层,将解决图像超分辨率问题转换成解决高光谱重建问题,实现网络从空间维度到光谱维度的转变.实验结果表明:本文所提算法无论是在主观效果上还是在客观评估指标上均优于主流的传统方法和深度学习方法,与稀疏字典方法相比,本文算法的平均相对绝对误差(MRAE)和均方根误差(RMSE)分别下降了46.7%和44.8%.
推荐文章
基于三维残差网络和虚拟样本的高光谱图像分类方法研究
高光谱图像
图像分类
深度学习
参数优化
三维残差网络
实验验证
基于半像素运动估计的DCVS残差重建算法
半像素插值
多假设
边信息
运动估计
分布式视频编码
基于改进的深度残差网络的表情识别研究
深度学习
残差网络
表情识别
迁移学习
支持向量机
残差网络研究综述
残差网络
深度学习
神经网络
捷径连接
梯度消失
梯度爆炸
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进残差密集网络的高光谱重建
来源期刊 光学学报 学科
关键词 光谱学 高光谱成像 残差密集网络 通道自适应 特征重标定 RGB图像
年,卷(期) 2021,(7) 所属期刊栏目 光谱学|Spectroscopy
研究方向 页码范围 180-189
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3788/AOS202141.0730001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (15)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(13)
  • 参考文献(1)
  • 二级参考文献(12)
2018(18)
  • 参考文献(1)
  • 二级参考文献(17)
2019(19)
  • 参考文献(4)
  • 二级参考文献(15)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光谱学
高光谱成像
残差密集网络
通道自适应
特征重标定
RGB图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学学报
半月刊
0253-2239
31-1252/O4
大16开
上海市嘉定区清河路390号(上海800-211信箱)
4-293
1981
chi
出版文献量(篇)
11761
总下载数(次)
35
论文1v1指导