基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统BP神经网络算法应用于波浪发电系统捕获功率预测,易陷入局部最优和泛化能力不足,为此提出一种改进的粒子群优化神经网络算法,动态调整学习因子并添加变异算子.采用间接预测策略,搭建从波浪数据到波浪捕获功率的直驱式波浪发电系统模型;应用改进算法预测分析波浪历史数据,输入搭建模型,进而获得波浪捕获功率预测值.比较分析不同预测步数和不同算法的仿真结果可知,改进算法能有效克服传统算法不足,提高预测精度.
推荐文章
基于改进粒子群优化算法的神经网络设计
粒子群算法
蚁群算法
信息素
神经网络设计
基于粒子群优化神经网络的卫星故障预测方法
故障预测
卫星
粒子群优化
神经网络
时间序列
基于改进的量子粒子群优化小波神经网络的网络流量预测
小波神经网络
量子粒子群优化
聚拢度
流量预测
收缩-扩张系数
基于粒子群算法优化BP神经网络的产品质量预测分析
BP神经网络
改进
粒子群算法
产品质量预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子群优化神经网络算法的波浪捕获功率预测
来源期刊 太阳能学报 学科
关键词 粒子群优化算法 神经网络 预测 波能转换 功率捕获
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 302-308
页数 7页 分类号 TM619
字数 语种 中文
DOI 10.19912/j.0254-0096.tynxb.2018-0910
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (118)
共引文献  (178)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(10)
  • 参考文献(1)
  • 二级参考文献(9)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(13)
  • 参考文献(0)
  • 二级参考文献(13)
2010(19)
  • 参考文献(0)
  • 二级参考文献(19)
2011(17)
  • 参考文献(2)
  • 二级参考文献(15)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(17)
  • 参考文献(4)
  • 二级参考文献(13)
2014(7)
  • 参考文献(4)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化算法
神经网络
预测
波能转换
功率捕获
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
总被引数(次)
77807
论文1v1指导