原文服务方: 太原理工大学学报       
摘要:
脑卒中具有极高致残率和致死率,研究脑卒中病变的自动识别和分割方法具有重要的临床意义。提出一种基于双向循环U-Net(BIRU-Net)模型的病灶分割方法。首先,引入循环神经网络结构,将改进的注意力卷积门递归单元(ACGRU)替代U-Net中的部分卷积层,使分割模型既适用于小规模标注的医学影像数据集,又具有长时记忆特性;其次,采用双路融合训练机制,将单一视面的正向、反向的切片数据同时输入BIRU-Net,并在模型前向传播过程实现双向特征融合,有效利用了切片序列的双向依赖特性。最后,将各单一视面的分割结果进行再融合,有效利用了数据的空间上下文信息。对于ATLAS数据集的实验结果表明,所提方法的DSC值达到了62.58%,与现阶段的其他方法相比,本文的方法能较为准确地分割出病灶区域。
推荐文章
基于U-Net卷积神经网络的轮毂缺陷分割
轮毂缺陷分割
自动分割
深度学习
神经网络
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
基于轻量型U-net的钢材金相图像晶界分割方法
金相图像
晶界分割
浅层特征信息
轻量型
U-net
基于Group-Depth U-Net的电子显微图像中神经元结构分割
深层卷积神经网络
分组卷积网络
神经元结构分割
电子显微成像
Group-DepthU-Net
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双向循环U-Net模型的脑卒中病灶分割方法
来源期刊 太原理工大学学报 学科
关键词 深度学习 脑卒中病灶分割 CGRU; U-Net 双向特征融合 多视面融合
年,卷(期) 2022,(6) 所属期刊栏目 信息与计算机
研究方向 页码范围 1127-1133
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.16355/j.cnki.issn1007-9432tyut.2022.06.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
脑卒中病灶分割
CGRU;
U-Net
双向特征融合
多视面融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太原理工大学学报
双月刊
1007-9432
14-1220/N
大16开
太原市迎泽西大街79号3337信箱
1957-01-01
汉语
出版文献量(篇)
4103
总下载数(次)
0
总被引数(次)
28999
论文1v1指导