摘要:
高分辨率无人机遥感影像单木树冠参数信息提取方法是森林资源精准监测和生态功能评估的重要基础,而自然光照条件下粘连和遮挡单木树冠的准确分割是直接决定单木树冠信息提取精度的关键.针对自然光照条件下山地森林无人机遥感影像中单木树冠相互粘连、遮挡难以分割,以及传统算法泛化能力弱等问题.本研究结合深度学习和标记控制分水岭算法的优点,提出了一种基于U-Net和标记控制分水岭(marker-controlled watershed,MCW)算法(简称U-Net+MCW算法)的山地森林单木树冠提取方法.以新疆山地森林优势树种天山云杉(Picea schrenkiana var.tianschanica)为研究对象,在南山实习林场采集积雪背景下无人机遥感影像作为试验数据,构建了基于深度神经网络U-Net和标记控制分水岭算法的单木树冠提取模型.首先,从无人机遥感影像中选取1000张训练样本,128张测试样本,并对样本进行标注,通过数据增强将1000张训练样本扩增为16000张,按照4:1分为训练集和验证集,对U-Net模型进行训练,在训练过程中赋予2个或多个树冠间的相邻边界像素较大权重.然后,利用训练好的U-Net模型对测试集样本进行单木树冠提取.最后,在深度神经网络U-Net单木树冠提取的基础上,采用MCW算法对提取结果进行优化,并对单木树冠提取效果进行精度评估.结果表明,U-Net+MCW算法对于单木尺度的F测度为74.04%,比单一使用U-Net模型提高了28.52%,以该方法提取遥感影像中的天山云杉树冠信息为基础,计算其单木树冠面积和冠幅的精度分别为81.05%和89.94%.因此,U-Net+MCW算法能够有效解决自然光照条件下,由于原始图像背景复杂且树冠内部亮度变化不均匀和树冠间粘连、遮挡等因素,导致的单个树冠内、树冠聚集处或连接重叠区域出现的树冠错分割、过分割、合并等问题,是一种低成本、高效率的单木树冠提取方法,能够满足中小尺度山地森林资源调查和监测要求.