基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The complicated electromagnetic environment of the BeiDou satellites introduces vari-ous types of external jamming to communication links,in which recognition of jamming signals with uncertainties is essential. In this work,the jamming recognition framework proposed consists of fea-ture fusion and a convolutional neural network (CNN). Firstly,the recognition inputs are obtained by prepossessing procedure,in which the 1-D power spectrum and 2-D time-frequency image are ac-cessed through the Welch algorithm and short-time Fourier transform (STFT),respectively. Then,the 1D-CNN and residual neural network (ResNet) are introduced to extract the deep features of the two prepossessing inputs,respectively. Finally,the two deep features are concatenated for the following three fully connected layers and output the jamming signal classification results through the softmax layer. Results show the proposed method could reduce the impacts of potential feature loss,therefore improving the generalization ability on dealing with uncertainties.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Jamming Recognition Based on Feature Fusion and Convolutional Neural Network
来源期刊 北京理工大学学报(英文版) 学科
关键词
年,卷(期) 2022,(2) 所属期刊栏目
研究方向 页码范围 169-177
页数 9页 分类号
字数 语种 英文
DOI 10.15918/j.jbit1004-0579.2021.105
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
北京理工大学学报(英文版)
季刊
1004-0579
11-2916/T
16开
北京海淀中关村南大街5号(白石桥路7号)
1992
eng
出版文献量(篇)
2052
总下载数(次)
1
论文1v1指导