基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Deep learning based analyses of computed tomography (CT) images contribute to automated diagnosis of COVID-19,and ensemble learning may commonly provide a better solution.Here,we proposed an ensemble learning method that integrates several component neural networks to jointly diagnose COVID-19.Two ensemble strategies are considered:the output scores of all component models that are combined with the weights adjusted adaptively by cost function back propagation;voting strategy.A database containing 8347 CT slices of COVID-19,common pneumonia and normal subjects was used as training and testing sets.Results show that the novel method can reach a high accuracy of 99.37% (recall:0.9981;precision:0.9893),with an increase of about 7%in comparison to single-component models.And the average test accuracy is 95.62% (recall:0.9587;precision:0.9559),with a corresponding increase of 5.2%.Compared with several latest deep learning models on the identical test set,our method made an accuracy improvement up to 10.88%.The proposed method may be a promising solution for the diagnosis of COVID-19.
推荐文章
COVID-19临床资料分析
新型冠状病毒
感染
新型冠状病毒性肺炎
COVID-19疫情下方舱CT的紧急建设
新型冠状病毒肺炎
方舱CT
辐射防护
CT质量控制
儿童COVID-19的流行病学与临床诊疗特点
新型冠状病毒肺炎
儿童
流行病学
诊断治疗
COVID-19合并肺血栓栓塞症的临床特点
新型冠状病毒肺炎
新型冠状病毒
肺栓塞
预后
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images
来源期刊 上海交通大学学报(英文版) 学科 医学
关键词
年,卷(期) 2022,(1) 所属期刊栏目
研究方向 页码范围 70-80
页数 11页 分类号 TP183|R445
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
上海交通大学学报(英文版)
双月刊
1007-1172
31-1943/U
大16开
上海市华山路1954号上海交通大学
1996
eng
出版文献量(篇)
2087
总下载数(次)
0
总被引数(次)
4389
论文1v1指导