基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决由于近邻选择不恰当导致的推荐性能下降问题,提出基于自然近邻与协同过滤的API推荐方法——N-APIRec.该方法利用BM25算法将项目转换成向量,以自然近邻算法筛选数据集中的相似项目以减少搜索范围,从相似项目中筛选相似的方法声明,通过协同过滤的方式推荐API.将N-APIRec在MV、SH数据集上与前沿方法进行实验对比,结果验证了N-APIRec的有效性,在MV、SH数据集上的推荐成功率分别为77.38%、30.00%,优于现有方法.
推荐文章
基于熵优化近邻选择的协同过滤推荐算法
协同过滤
近邻选择
相似性
巴氏系数
推荐权重
基于评分支持度的最近邻协同过滤推荐算法
协同过滤
最近邻居
评分支持度
相似度
改进型协同过滤的API服务推荐方法研究
API服务
协同过滤推荐算法
信任度挖掘
空值填补
个性化推荐
仿真实验
基于组合优化理论的协同过滤推荐算法
局部
组合优化理论
协同过滤
推荐算法
稀疏问题
评分精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自然近邻与协同过滤的API推荐方法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 代码复用 API推荐 自然近邻 BM25 协同过滤
年,卷(期) 2022,(3) 所属期刊栏目 计算机与控制工程|Computer and Control Engineering
研究方向 页码范围 494-502
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2022.03.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
代码复用
API推荐
自然近邻
BM25
协同过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
论文1v1指导