基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Deep learning,accounting for the use of an elaborate neural network,has recently been developed as an efficient and powerful tool to solve diverse problems in physics and other sciences.In the present work,we propose a novel learning method based on a hybrid network integrating two different kinds of neural networks:Long Short-Term Memory(LSTM)and Deep Residual Network(ResNet),in order to overcome the difficulty met in numerically simulating strongly-oscillating dynamical evolutions of physical systems.By taking the dynamics of Bose-Einstein condensates in a double-well potential as an example,we show that our new method makes a highly efficient pre-learning and a high-fidelity prediction about the whole dynamics.This benefits from the advantage of the combination of the LSTM and the ResNet and is impossibly achieved with a single network in the case of direct learning.Our method can be applied for simulating complex cooperative dynamics in a system with fast multiple-frequency oscillations with the aid of auxiliary spectrum analysis.
推荐文章
Bose-Einstein凝聚体能谱的研究
激发态能谱
凝聚体
自恰场
一维斜光格子势阱中囚禁Bose-Einstein 凝聚体的混沌行为
斜光格子势阱
Bose-Einstein凝聚
混沌解
运动光学晶格中Bose-Einstein凝聚的混沌
Bose-Einstein凝聚
混沌
Gross-Pitaevskii方程
Lyapunov指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Revisiting the dynamics of Bose-Einstein condensates in a double well by deep learning with a hybrid network
来源期刊 物理学前沿 学科
关键词
年,卷(期) 2022,(2) 所属期刊栏目 Atomic, Molecular & Optical Physics
研究方向 页码范围 6-16
页数 11页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
物理学前沿
双月刊
2095-0462
11-5994/O4
北京市朝阳区惠新东街4号富盛大厦15层
eng
出版文献量(篇)
1093
总下载数(次)
0
总被引数(次)
1881
论文1v1指导