基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Vehicle information on high-speed trains can not only determine whether the various parts of the train are working normally,but also predict the train's future operating status.How to obtain valuable information from massive vehicle data is a difficult point.First,we divide the vehicle data of a high-speed train into 13 subsystem datasets,according to the functions of the collection components.Then,according to the gray theory and the Granger causality test,we propose the Gray-Granger Causality (GGC) model,which can construct a vehicle information network on the basis of the correlation between the collection components.By using the complex network theory to mine vehicle information and its subsystem networks,we find that the vehicle information network and its subsystem networks have the characteristics of a scale-free network.In addition,the vehicle information network is weak against attacks,but the subsystem network is closely connected and strong against attacks.
推荐文章
Incorporation of silica into the goethite structure: a microscopic and spectroscopic study
Quartz
Goethite
Twinned goethite
Microscopic characterization (FESEM and TEM)
FT-IR spectroscopy
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 GGC:Gray-Granger Causality Method for Sensor Correlation Network Structure Mining on High-Speed Train
来源期刊 清华大学学报自然科学版(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 REGULAR ARTICLES
研究方向 页码范围 207-222
页数 16页 分类号
字数 语种 英文
DOI 10.26599/TST.2021.9010034
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报自然科学版(英文版)
双月刊
1007-0214
11-3745/N
16开
北京市海淀区双清路学研大厦B座908
1996
eng
出版文献量(篇)
2269
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导