基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.
推荐文章
基于ODE引擎的开放式仿人机器人仿真
仿人机器人
ODE
动力学仿真
开放式系统
任意初始条件ODE数值解的并行算法
ODE(常微分方程)
并行算法
矩阵指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Continuous-Time Prediction of Industrial Paste Thickener System With Differential ODE-Net
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2022,(4) 所属期刊栏目 PAPERS
研究方向 页码范围 686-698
页数 13页 分类号
字数 语种 英文
DOI 10.1109/JAS.2022.105464
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
论文1v1指导