基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于骨架数据的动作识别方法由于其对动态环境和复杂背景的强适应性而受到广泛的关注和研究,应用图卷积网络描述人体骨架实现人体动作识别可以取得很好的识别效果,但实现过程中图的拓扑结构通常是手动设置的,且在所有层和输入样本上的结构固定,只能捕获关节之间的局部物理关系,会遗漏非物理连接的关节相关性.提出了一种新的基于区域关联自适应图卷积网络的骨架动作识别,通过自适应图卷积使参数化的全局图和单个数据图的结构与模型卷积参数在不同的层中分别进行训练和更新,增加了模型中图形构造的灵活性与模型对于各种数据样本的通用性.同时引入区域关联图卷积,通过在关节特征与连接特征之间交替信息传递来捕获数据帧间各关节的非物理连接相关性.并加入骨骼的二阶数据对原有关节数据进行信息补充,融合两者构成双流网络提升识别网络的性能.在NTU-RGBD大规模数据集上的实验表明,该模型在动作识别的准确率上有了一定的提升.
推荐文章
基于CHMMs的自适应行为识别方法
行为识别
耦合隐马尔可夫模型
加速度传感器
数据融合
基于自适应最优核和卷积神经网络的气液两相流流型识别方法
气液两相流
流型识别
算法
时频分析
神经网络
基于时空图像分割和交互区域检测的人体动作识别方法
人体动作识别
时空图像分割
交互区域
局部约束线性编码
支持向量机
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用区域关联自适应图卷积的动作识别方法
来源期刊 计算机科学与探索 学科 工学
关键词 自适应 区域关联 双流网络 图卷积
年,卷(期) 2022,(4) 所属期刊栏目 人工智能|Artificial Intelligence
研究方向 页码范围 898-908
页数 11页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1673-9418.2010070
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自适应
区域关联
双流网络
图卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导