基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
It is difficult to rapidly design the process parameters of copper alloys by using the traditional trial-and-error method and simultan-eously improve the conflicting mechanical and electrical properties. The purpose of this work is to develop a new type of Cu–Ni–Co–Si alloy saving scarce and expensive Co element, in which the Co content is less than half of the lower limit in ASTM standard C70350 alloy, while the properties are as the same level as C70350 alloy. Here we adopted a strategy combining Bayesian optimization machine learning and experi-mental iteration and quickly designed the secondary deformation-aging parameters (cold rolling deformation 90%, aging temperature 450℃, and aging time 1.25 h) of the new copper alloy with only 32 experiments (27 basic sample data acquisition experiments and 5 iteration experi-ments), which broke through the barrier of low efficiency and high cost of trial-and-error design of deformation-aging parameters in precipita-tion strengthened copper alloy. The experimental hardness, tensile strength, and electrical conductivity of the new copper alloy are HV (285 ± 4), (872 ± 3) MPa, and (44.2 ± 0.7)% IACS (international annealed copper standard), reaching the property level of the commercial lead frame C70350 alloy. This work provides a new idea for the rapid design of material process parameters and the simultaneous improvement of mech-anical and electrical properties.
推荐文章
Co对Al-20Si-2Cu-1Ni-0.5Mn合金微观组织和力学性能的影响
过共晶Al-Si合金
Co
微观组织
力学性能
Cu-Ni-Fe-Co合金的烧结致密化
粉末冶金
Cu基连杆
烧结
致密化
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Rapid design of secondary deformation-aging parameters for ultra-low Co con-tent Cu–Ni–Co–Si–X alloy via Bayesian optimization machine learning
来源期刊 矿物冶金与材料学报 学科
关键词
年,卷(期) 2022,(6) 所属期刊栏目
研究方向 页码范围 1197-1205
页数 9页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
矿物冶金与材料学报
月刊
1674-4799
11-5787/TF
北京科技大学(北京海淀区学院路30号)
eng
出版文献量(篇)
3119
总下载数(次)
0
总被引数(次)
10994
论文1v1指导