摘要:
珍珠粉和珍珠层粉化学成分相似,但是珍珠层粉的药用价值远低于珍珠粉,并且珍珠层粉制备容易,成本底,常被不法商家用于冒充或掺入珍珠粉中流入市场,谋取利益.因此,对珍珠粉掺伪鉴别和纯度检测具有重要的意义.采用激光拉曼光谱结合深度学习研究珍珠粉掺伪快速鉴别和纯度分析.将纯珍珠粉和珍珠层粉按一定比例混合,制成珍珠粉质量百分数分别为0%,25%,50%,75%,80%,85%,90%,95% 与100% 共9种纯度270个模拟掺伪珍珠粉样本.然后对样本进行拉曼光谱采集,参数设置如下:分辨率为4.5 cm-1,积分时间为3000 ms,激光功率为20 mW.搭建了深度卷积生成式对抗神经网络(DCGAN)模型,对样本拉曼光谱进行数据增强;在此基础上,结合K近邻(K-nearest neighbor)、随机森林(random forest)、决策树(decision tree)、一维卷积神经网络(1D-CNN)4种分类器,对纯度为85%,90%,95% 与100% 的小比例掺伪样本进行真伪鉴别分析;同时,结合一维卷积神经网络对9种纯度的珍珠粉掺伪样本建立纯度预测的定量模型.结果表明:基于DCGAN数据增强方法所生成的拉曼光谱,与原始光谱相比,在峰值信噪比和结构相似度两个评价指标上均明显优于传统数据增强方法;在珍珠粉掺伪定性鉴别方面,DC-G A N增强后的数据分别送入4种分类器,对4种小比例掺杂样本的真伪鉴别正确率均达到100%;在对9种掺伪纯度样本纯度检测方面,对测试集样本,DCGAN-1DCNN方法所建纯度定量预测模型性能最优,其决定系数R2为0.9884,预测均方根误差RMSEP为0.0348,一维卷积神经网络的损失值Loss为0.0012,定量模型拟合最好.拉曼光谱结合DCGAN算法为珍珠粉掺伪鉴别及纯度检测提供一种快速简便的方法.深度卷积生成式对抗网络的数据增强方法在光谱分析技术领域具有重要的研究意义和应用价值.