基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图自编码器GAE是一种源自图神经网络的学习框架,在编码器中引入聚合邻域节点的思想,解码器对图结构数据进行解码,重构图结构数据;在模型中引入监督模块,可以提高图结构数据在模型中的嵌入完整性和数据生成的准确性;编解码可以采用不同的神经网络,从而利用不同神经网络的优点.近年来GAE推荐逐渐成为推荐系统研究的热点.从无监督学习与半监督学习方面分析了已有GAE推荐研究取得的进展;探讨了已有GAE推荐模型存在用户冷启动问题、可解释性差、模型复杂度高和难以处理数据的多源异构性等方面的问题;并从跨领域推荐,结合传统推荐方法,引入注意力机制,融合各类场景等研究方向对未来GAE推荐进行展望.
推荐文章
基于多重降噪自编码器模型的top-N推荐算法
预测精度
用户评分
加噪操作
多重降噪自编码器
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
融合降噪自编码器与BPSO的特征组合方法及其中医应用
降噪自编码器
二进制粒子群算法
非线性
中医药
基于稀疏自编码器和SVM的垃圾短信过滤
支撑矢量机
稀疏自编码器
短信
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 图自编码器推荐研究综述
来源期刊 计算机工程与科学 学科 工学
关键词 图自编码器 推荐 无监督学习 半监督学习
年,卷(期) 2022,(2) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 335-344
页数 10页 分类号 TP301
字数 语种 中文
DOI 10.3969/j.issn.1007-130X.2022.02.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图自编码器
推荐
无监督学习
半监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导