基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 从图像中裁剪出构图更佳的区域是提升图像美感的有效手段之一,也是计算机视觉领域极具挑战性的问题.为提升自动裁图的视觉效果,本文提出了聚合细粒度特征的深度注意力自动裁图方法(deep attention guided image cropping network with fine-grained feature aggregation,DAIC-Net).方法 整体模型结构由通道校准的语义特征提取(semantic feature extraction with channel calibration,ECC)、细粒度特征聚合(fine-grained feature aggrega-tion,FFA)和上下文注意力融合(contextual attention fusion,CAF)3个模块构成,采用端到端的训练方式,核心思想是多尺度逐级增强不同细粒度区域特征,融合全局和局部注意力特征,强化上下文语义信息表征.ECC模块在通用语义特征的通道维度上进行自适应校准,融合了通道注意力;FFA模块将多尺度区域特征级联互补,产生富含图像构成和空间位置信息的特征表示;CAF模块模拟人眼观看图像的规律,从不同方向、不同尺度显式编码图像空间不同像素块之间的记忆上下文关系;此外,定义了多项损失函数以指导模型训练,进行多任务监督学习.结果 在3个数据集上与最新的6种方法进行对比实验,本文方法优于现有的自动裁图方法,在最新裁图数据集GAICD(grid anchor based image cropping database)上,斯皮尔曼相关性和皮尔森相关性指标分别提升了2.0%和1.9%,其他最佳回报率指标最高提升了4.1%.在ICDB(image cropping database)和FCDB(flickr cropping database)上的跨数据集测试结果进一步表明了本文提出的DAIC-Net的泛化性能.此外,消融实验验证了各模块的有效性,用户主观实验及定性分析也表明DAIC-Net能裁剪出视觉效果更佳的裁图结果.结论 本文提出的DAIC-Net在GAICD数据集上多种评价指标均取得最优的预测结果,在ICDB和FCDB测试集上展现出较强的泛化能力,能有效提升裁图效果.
推荐文章
基于多通道视觉注意力的细粒度图像分类
图像分类
细粒度图像分析
视觉注意力
图像表示
深度学习
基于增强多重注意力机制的深度神经网络的细粒度检测
多注意力机制
端到端
细粒度图像识别
基于深度学习的社交网络平台细粒度情感分析
情感分析
深度学习
降噪自动编码器
社交网络平台
基于语义扩展与注意力网络的问题细粒度分类
细粒度分类
依存句法
语义扩展
长短期记忆网络
注意力网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 聚合细粒度特征的深度注意力自动裁图
来源期刊 中国图象图形学报 学科 工学
关键词 自动裁图 图像美学评价(IAA) 感兴趣区域(RoI) 空间金字塔池化(SPP) 注意力机制 多任务学习
年,卷(期) 2022,(2) 所属期刊栏目 图像视频分析|Image & Video Analysis
研究方向 页码范围 586-601
页数 16页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自动裁图
图像美学评价(IAA)
感兴趣区域(RoI)
空间金字塔池化(SPP)
注意力机制
多任务学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导