基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
互联网购物逐渐走进人们生活,人们在购物的同时也会留下海量评论文本,这些文本蕴含着巨大的价值和情感倾向,通过分析这些服装电商评论文本情感倾向,为推荐系统提供了参考.传统的算法难以提取到文本更深层次的情感特征,难以达到很好的效果.因此,该文提出了一种基于多层注意力机制BiGRU-SD-Attention的算法模型.首先,通过分布式爬虫采集服装电商评论文本,将文本数据进行清洗,划分为词语级别和句子级别数据集;利用BiGRU网络提取文本的正、负情感特征,然后对词语和句子分别运用注意力机制进行情感特征的重新加权计算;通过多层递进的权重计算,最后分类输出服装电商文本的情感特征倾向.实验结果表明,该算法的准确率达到了94.23%,对比传统的SVM算法(81.67%)以及单一注意力机制的BiLSM-Attention算法(93.50%),在各方面都有了显著的提升.
推荐文章
基于BiLSTM-Attention的电商评论情感分析
情感分析
长短期神经网路
注意力机制
基于BLSTM和注意力机制的电商评论情感分类模型?
电商评论
情感分类
双向长短时记忆网络
注意力机制
基于表情符注意力机制的微博情感分析模型
表情符
微博
情感分析
注意力机制
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多层注意力机制的服装电商评论情感分析
来源期刊 计算机技术与发展 学科 工学
关键词 分布式爬虫 服装电商评论 双向门控循环记忆网络 注意力机制 情感分析
年,卷(期) 2022,(1) 所属期刊栏目 大数据分析与挖掘
研究方向 页码范围 67-72
页数 6页 分类号 TP391.1
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2022.01.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
分布式爬虫
服装电商评论
双向门控循环记忆网络
注意力机制
情感分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
论文1v1指导