基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来基于深度神经网络的行人重识别算法取得了长足的进步,被广泛应用于网络中的批归一化(batch normalization)模块发挥着重要作用.批归一化模块在多数情况下可有效提高网络收敛速度和训练稳定性,然而当多个独立标注的数据库混合在一块进行跨域或者多域训练时,数据之间的分布差异使得目前的批归一化算法工作逻辑存疑.由于不同批次下训练数据的分布差异较大,归一化过程中的统计参数不稳定导致批归一化效果恶化.该文聚焦于多数据集合并下的行人重识别模型训练问题,通过对多数据集分布差异导致的多域模型批归一化存在的问题进行分析.然后针对模型批量归一化算法面对的多域差异,提出了一种解决策略,在多个数据集并行训练下提高了模型的泛化能力.实验结果表明:所提出的多域归一化方法在多域训练下能有效提高模型最终的泛化能力,获得更高的识别准确度,并且可应用于其他行人重识别网络以进一步提升模型性能.
推荐文章
行人重识别现状与发展趋势研究
行人重识别
人脸识别
人工智能
认知水平
基于深度学习的行人重识别研究综述
行人重识别
监督学习
半监督学习
弱监督学习
无监督学习
基于卷积注意力机制和多损失联合的跨模态行人重识别
跨模态行人重识别
深度学习
卷积注意力机制
多损失联合
不同批样本归一化处理方法
样本归一化:可靠性评估
数据采集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向行人重识别的多域批归一化问题研究
来源期刊 计算机技术与发展 学科 工学
关键词 计算机视觉 深度学习 行人重识别 多域训练 批归一化
年,卷(期) 2022,(1) 所属期刊栏目 图形与图像
研究方向 页码范围 91-97
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2022.01.016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机视觉
深度学习
行人重识别
多域训练
批归一化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导