摘要:
矿物光谱综合反映了岩矿的物理化学特性、组分和内部结构特征,已被应用于岩矿识别研究.传统的矿物光谱分类方法需要先对矿物光谱进行预处理,再采用不同方法分析光谱特征,从而实现分类目的.但同时也会造成部分光谱信息丢失,导致最终分类精度不高且操作过程繁琐、效率低下,难以应对日益增长的大数据处理需求.因此,建立一个准确、高效的矿物光谱自动分类模型意义重大.卷积神经网络是应用最广泛的深度学习模型之一,它通过逐层抽取数据特征并组合形成高层语义信息,具有极强的模型表达能力,在光谱数据分析方面应用潜力巨大.针对矿物光谱数据的特点,提出了基于一维空洞卷积神经网络(1D-D C-NN)的矿物光谱分类方法,利用空洞卷积神经网络提取光谱特征,采用反向传播算法结合随机梯度下降优化器调整模型参数,输出光谱分类结果,实现了矿物类别的端到端检测.该网络包含1个输入层、3个空洞卷积层、2个池化层、2个全连接层和1个输出层,采用交叉熵为损失函数,引入空洞卷积扩大滤波器感受野,有效避免光谱细节特征丢失.实验采集了白云母、白云石、方解石、高岭石四种矿物光谱,并通过添加噪声的方式进行数据增强,构建数量充足的矿物光谱样本用于神经网络模型训练与测试;探讨了卷积类型、迭代次数对模型分类结果的影响,并与多种传统矿物光谱分类方法进行对比,评价模型性能.实验结果表明,提出的1D-DCNN模型可实现矿物光谱快速准确分类,分类准确率达到99.32%,优于反向传播算法(BP)和支持向量机(SVM),说明所提方法能够充分学习矿物光谱特征并有效分类,且模型具有良好的鲁棒性和可扩展性.该方法也可推广到煤炭、油气、月壤等其他领域光谱分类应用中.