基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电价的实时波动,会对负荷预测精度产生一定影响,增加预测的复杂性.针对这一问题,本文构建基于注意力(AT-TENTION)机制的卷积神经网络(CNN)和双向门控循环单元(BIGRU)混合模型对短期电力负荷进行预测.首先用CNN对负荷及电价数据特征进行抽取;其次,利用BIGRU对潜藏的时序规律进行提取;最后结合ATTENTION机制,突出关键特征.仿真结果表明,与BP网络、CNN-GRU、CNN-BIGRU和CNN-GRU-ATTENTION混合模型的预测结果相比,上述模型具有更高的预测精度,是一种有效的短期负荷预测方法.
推荐文章
基于添加Dropout层的CNN-LSTM网络短期负荷预测
Dropout技术
长短期记忆网络
卷积网络
负荷预测
基于改进二次模态分解和BiLSTM-Attention的 短期电力负荷预测
二次模态分解
分解损失
注意力机制
双向长短期神经网络
短期电力负荷预测
短期电力负荷预测方法研究
电力系统
短期电力负荷
灰色预测方法
基于优化决策树的短期电力负荷预测
短期负荷预测
决策树
粗糙集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN-BIGRU-ATTENTION的短期电力负荷预测
来源期刊 计算机仿真 学科 工学
关键词 短期负荷预测 注意力机制 卷积神经网络 双向门控循环单元 混合模型
年,卷(期) 2022,(2) 所属期刊栏目 能源领域仿真
研究方向 页码范围 40-44,82
页数 6页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1006-9348.2022.02.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
注意力机制
卷积神经网络
双向门控循环单元
混合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
总被引数(次)
127174
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导