原文服务方: 微电子学与计算机       
摘要:
针对语义分割模型SegFormer在进行图像分割时存在多尺度语义信息利用不充分、细节特征丢失等问题,提出了一种改进的轻量级的语义分割算法,并设计了一个新的解码器来增强多尺度特征表示.采用新提出的瓶颈空间金字塔池化模块(BoSPP)以获得丰富且准确的多尺度信息,所提出模型采用拉普拉斯金字塔来获得编码阶段更精确的高分辨率细节特征,并将其应用于解码阶段来解决细节特征丢失的问题;最后对特征进行逐步融合,以避免上采样率过大导致细节损失,极大地保留丰富的细节特征进而增强最终的语义分割效果. ADE20K数据集的实验结果表明,使用改进后的解码器进行语义分割,在精度和运算量方面都有所改善.以使用MiT-B0编码器的实验为例,其mIoU指标相比原网络提升了1.36%,浮点运算量仅为原网络的51%.实验结果表明,改进后的模型在不增加大量计算成本的情况下提升了模型的分割精度,且浮点运算量更少,改进后的语义分割模型优于原模型,在增强多尺度特征和图像边界细节特征方面有更好的分割效果.
推荐文章
基于多尺度编码-解码网络的皮肤病变图像分割
皮肤病变
多尺度编码-解码网络
SegNet
二进制双线性插值
基于增强特征融合解码器的语义分割算法
语义分割
卷积神经网络
解码器
特征融合
注意力机制
PNG图像解码中高速Huffman解码器的设计
高速Huffman解码器
硬件解码
PNG图像
基于多尺度特征融合模型的遥感图像建筑物分割
遥感图像
建筑物分割
深度神经网络
膨胀卷积
多尺度特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于增强多尺度特征解码器的图像语义分割
来源期刊 微电子学与计算机 学科 工学
关键词 语义分割 轻量级网络模型 解码器 特征提取网络 多尺度特征
年,卷(期) 2023,(4) 所属期刊栏目
研究方向 页码范围 30-37
页数 8页 分类号
字数 语种 中文
DOI 10.19304/J.ISSN1000-7180.2022.0458
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2023(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语义分割
轻量级网络模型
解码器
特征提取网络
多尺度特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
论文1v1指导