基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过分析多光谱遥感图像学习样本在光谱空间不同位置对BP神经网络分类器分类精度的影响,提出基于x2 分布的学习样本选取方法,并应用于TM 图像分类.对6 种地物应用不同样本选取法训练的BP网分类器和Bayes分类器的分类结果比较表明:本方法分类精度明显高于Bayes分类器和其它样本选取法得到的BP网分类器,并具有学习样本数量少等特点
推荐文章
基于蚁群算法的多光谱遥感图像分类
多光谱遥感图像
分类
光谱特征
形状特征
蚁群算法
支持向量机分类器
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
采用ACGAN及多特征融合的 高光谱遥感图像分类
高光谱图像分类
生成对抗网络
局部二值模式
卷积神经网络
结合纹理分析的多光谱图像分类研究
纹理分割
LBP
多光谱
遥感图像
Landsat ETM+
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多光谱遥感图像BP网分类器学习样本选取法的研究
来源期刊 红外与毫米波学报 学科 工学
关键词 学习样本选取 X~2分布 BP神经网络 多光谱遥感图像
年,卷(期) 1999,(6) 所属期刊栏目
研究方向 页码范围 449-454
页数 6页 分类号 TP75
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
学习样本选取
X~2分布
BP神经网络
多光谱遥感图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外与毫米波学报
双月刊
1001-9014
31-1577/TN
大16开
上海市玉田路500号
4-335
1982
chi
出版文献量(篇)
2620
总下载数(次)
3
总被引数(次)
28003
论文1v1指导