原文服务方: 华侨大学学报(自然科学版)       
摘要:
为解决标记样本缺乏、提升分类精度及增强模型容错性等问题,提出一种基于辅助分类器生成对抗网络(ACGAN)的分类方法.首先,将预训练的ACGAN模型作为光谱特征提取器,采用局部二值模式(LBP)算法提取图像的纹理特征;然后,融合光谱特征和纹理特征,由卷积神经网络(CNN)进行分类.在2个广泛使用的数据集上进行实验,结果表明:相较于其他方法,文中方法可显著提高分类精度.
推荐文章
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
基于蚁群算法的多光谱遥感图像分类
多光谱遥感图像
分类
光谱特征
形状特征
蚁群算法
支持向量机分类器
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
基于DE-GEP的高光谱遥感图像分类
遥感图像
演化算法
波段选择
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用ACGAN及多特征融合的 高光谱遥感图像分类
来源期刊 华侨大学学报(自然科学版) 学科
关键词 高光谱图像分类 生成对抗网络 局部二值模式 卷积神经网络
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 113-120
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.11830/ISSN.1000-5013.201710006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈锻生 华侨大学计算机科学与技术学院 75 955 16.0 28.0
2 刘群 华侨大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (92)
共引文献  (46)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(14)
  • 参考文献(1)
  • 二级参考文献(13)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(7)
  • 参考文献(4)
  • 二级参考文献(3)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
生成对抗网络
局部二值模式
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2681
总下载数(次)
0
总被引数(次)
14643
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导