基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对语音识别中由于强噪声的影响而引起的Lombard和Loud效应进行研究,提出了基于训练数据的加性噪声和Lombard及Loud效应的联合补偿法.对于加性噪声是从谱减法的逆向角度对训练数据在频谱域采用谱加法;对于Lombard和Loud语音,则采用基于隐马尔可夫模型(HMM)状态标注的训练数据补偿,该方法同时考虑Lombard和Loud语音不同声学单元的不同状态在倒谱域的多种变化和多种变异情况下不同声学单元的音长及相对音长的变化.这种基于数据的多模式补偿使模型自动适应多种噪声和语音变异情况,在强噪声环境下具有很强的鲁棒性,并且不影响识别系统在正常环境或正常发音时的识别性能.同时,由于补偿是在训练过程中得到,不增加识别时的计算复杂度.
推荐文章
含噪语音信号中噪声参数的一种估计方法
语音增强
噪声估计
短时谱幅
谱相减法
一种改进的语音识别抗噪算法
语音识别
抗噪算法
语音增强
信噪比
一种Robust语音识别的改进谱减方法
Robust语音识别
加性噪声
谱减
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种用于强噪声环境下语音识别的含噪Lombard及Loud语音补偿方法
来源期刊 声学学报 学科 物理学
关键词
年,卷(期) 2003,(1) 所属期刊栏目
研究方向 页码范围 28-32
页数 5页 分类号 O422
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 易克初 218 1785 21.0 32.0
2 田斌 74 539 12.0 20.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
声学学报
双月刊
0371-0025
11-2065/O4
大16开
北京市北四环西路21号
2-181
1964
chi
出版文献量(篇)
2139
总下载数(次)
5
总被引数(次)
26571
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导