基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
给出Banach空间E上一个C0-半群{T(t)}t≥0的生成元A与其对偶半群{T*(t)}t≥0的生成元A#之间的关系,证明了A#=A*;讨论了E⊙是Banach格E*的子格条件和带的条件,证明了当T*(t)保分离性时E⊙是E*的子格;当E*的任意有界递减序列按范数收敛时E⊙是E*的带;当E*有分解E*=E⊙+E⊙d时,对每个φ∈E⊙d,T*(t)φ与φ是分离的.
推荐文章
C0-半群拓扑(Ⅱ)
半群
局部凸线性拓扑空间
C0-半群拓扑
C0-半群的一表示定理
C0-半群
无穷小生成元
一致收敛
可微性
表示定理
对偶空间上的弱*C-半群
对偶空间
C-半群
弱*C-半群
Banach空间上强混合的C-半群
强混合
C-半群
Banach空间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Banach格上对偶C0-半群
来源期刊 陕西师范大学学报(自然科学版) 学科 数学
关键词 Banach格 C0-半群 对偶
年,卷(期) 2003,(3) 所属期刊栏目 专题研究
研究方向 页码范围 13-15,27
页数 4页 分类号 O177.2
字数 2117字 语种 中文
DOI 10.3321/j.issn:1672-4291.2003.03.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王顺钦 南阳师范学院数学系 24 43 5.0 6.0
2 邓春源 陕西师范大学数学与信息科学学院 7 21 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Banach格
C0-半群
对偶
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西师范大学学报(自然科学版)
双月刊
1672-4291
61-1071/N
大16开
陕西省西安市长安南路
52-109
1960
chi
出版文献量(篇)
3025
总下载数(次)
7
总被引数(次)
18459
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导