作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对大型泵站年用电量的非线性规律,提出应用BP网络模型的预测方法.该方法采用误差逆传播学习规则,具有较强的非线性拟合能力,实例计算分析表明,与线性回归模型预测方法相比较,BP网络模型对大型泵站年用电量的预测是有效的.
推荐文章
基于ABC-BP神经网络的用电量预测研究
人工蜂群算法
BP神经网络
用电量预测
预测算法
基于电能替代背景下的新疆用电量预测研究
电能替代
用电量预测
最优组合预测模型
基于多元线性回归模型和灰色理论的山东省用电量预测
山东省
多元线性回归
灰色预测
全社会用电量
基于ARIMA模型对汽车工厂用电量分析与预测
时间序列
ARIMA模型
汽车工厂
用电量
Eviews 10
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 BP网络模型在大型泵站用电量预测中的应用
来源期刊 水电能源科学 学科 工学
关键词 用电量预测 BP网络 拟合度
年,卷(期) 2004,(1) 所属期刊栏目 机电与控制工程
研究方向 页码范围 86-88
页数 3页 分类号 TM734
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (158)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(4)
  • 参考文献(0)
  • 二级参考文献(4)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(7)
  • 参考文献(3)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(9)
  • 参考文献(2)
  • 二级参考文献(7)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
用电量预测
BP网络
拟合度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导