The definition of generalized product of fractal is first put forward for the research on the relations between original fractal and its product of fractal when the transformations of iteration function system (IFS) are incomplete. Then the representations of generalized product of IFS are discussed based on the theory of the product of fractal. Furthermore, the dimensional relations between the product of fractal and its semi-product are obtained. The dimensional relations of self-similar set are discussed. Finally, the examples for rendering fractal graphs are given. These results posses potentials in image compression and pattern recognition.