作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改进蚁群优化算法的收敛速度,研究了一种基于粗粒度模型的并行蚁群优化算法,该算法将搜索任务划分给q个子群,由这些子群并行地完成搜索,可使搜索速度大幅度提高.实验结果表明,用该算法求解TSP问题,收敛速度比最新的改进算法快百倍以上.
推荐文章
基于细粒度模型的并行蚁群优化算法
蚁群优化算法
蚁群系统
并行算法
细粒度模型
TSP问题
基于细粒度模型的并行蚁群优化算法
蚁群优化算法
蚁群系统
并行算法
细粒度模型
TSP问题
蚁群算法用于TSP的并行策略及模型
蚁群算法
元启发式算法
旅行商问题
并行计算
基于C++ AMP加速并行蚁群算法
蚁群算法
并行蚁群算法
C++ AMP
GPU计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粗粒度模型的蚁群优化并行算法
来源期刊 计算机工程 学科 工学
关键词 蚁群优化算法 蚁群系统 并行算法 粗粒度模型
年,卷(期) 2005,(1) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 157-159
页数 3页 分类号 TP301.6
字数 4594字 语种 中文
DOI 10.3969/j.issn.1000-3428.2005.01.060
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱庆保 南京师范大学计算机系 78 1563 17.0 38.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (12)
同被引文献  (8)
二级引证文献  (6)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(3)
  • 引证文献(3)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群优化算法
蚁群系统
并行算法
粗粒度模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导