基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于电力变压器故障信息的复杂性和不完备性,建立了基于粗糙集(RS)和支持向量机(SVM)相结合的故障诊断模型.先利用RS对变压器的故障样本进行知识约简,以获得故障征兆最小条件属性与故障类型的相关关系;后利用多类SVM对小样本数据的泛化能力,建立多类故障分类器用于故障诊断.实例验证了该方法是有效的.
推荐文章
基于RF特征优选的WOA-SVM变压器故障诊断
变压器
故障诊断
特征优选
随机森林
鲸鱼优化算法
用于变压器DGA故障诊断的改进PSO优化SVM算法研究
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
基于RS优化的电力变压器故障诊断方法
电力变压器
故障诊断
粗糙集
概率神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RS和多类SVM的变压器故障诊断
来源期刊 仪器仪表学报 学科 工学
关键词 粗糙集 支持向量机 故障诊断
年,卷(期) 2005,(8) 所属期刊栏目 故障诊断技术
研究方向 页码范围 2416-2418
页数 3页 分类号 TM4
字数 2587字 语种 中文
DOI 10.3321/j.issn:0254-3087.2005.08.618
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑绳楦 燕山大学信息工程学院 70 846 18.0 24.0
2 杨丽君 燕山大学电气工程学院 46 392 13.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (20)
参考文献  (2)
节点文献
引证文献  (10)
同被引文献  (23)
二级引证文献  (33)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(2)
  • 引证文献(2)
  • 二级引证文献(0)
2007(1)
  • 引证文献(0)
  • 二级引证文献(1)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(0)
  • 二级引证文献(1)
2010(4)
  • 引证文献(2)
  • 二级引证文献(2)
2011(4)
  • 引证文献(1)
  • 二级引证文献(3)
2012(9)
  • 引证文献(1)
  • 二级引证文献(8)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(5)
  • 引证文献(0)
  • 二级引证文献(5)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粗糙集
支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
总被引数(次)
146776
论文1v1指导