作者:
原文服务方: 机电信息       
摘要:
现以油浸式变压器为研究对象,采用支持向量机算法,选择径向基作为核函数,根据参数特点,通过改进粒子群算法对其进行优化,进而对油浸式变压器进行故障诊断。通过仿真实验得出,所提基于改进PSO算法优化的SVM算法,不仅可以避免局部极值问题,而且对小样本数据处理有很好的泛化能力,在解决电力变压器故障诊断问题上有着一定的发展潜力。
推荐文章
用于变压器DGA故障诊断的改进PSO优化SVM算法研究
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
基于改进粒子群优化T-S ANFIS算法的诊断油浸式变压器故障研究
油浸式变压器
改进粒子群
自适应模糊神经网络
故障诊断
算法优化
基于RF特征优选的WOA-SVM变压器故障诊断
变压器
故障诊断
特征优选
随机森林
鲸鱼优化算法
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进PSO-SVM算法的油浸式变压器故障诊断
来源期刊 机电信息 学科
关键词 粒子群算法 支持向量机 变压器 故障诊断
年,卷(期) 2022,(14) 所属期刊栏目 设备管理与改造
研究方向 页码范围 74-77
页数 3页 分类号 TM411
字数 语种 中文
DOI 10.19514/j.cnki.cn32-1628/tm.2022.14.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
支持向量机
变压器
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电信息
半月刊
1671-0797
32-1628/TM
大16开
南京市鼓楼区清江南路18号鼓楼创新广场D栋1119室
2001-07-01
汉语
出版文献量(篇)
223
总下载数(次)
0
总被引数(次)
0
论文1v1指导