原文服务方: 计算机测量与控制       
摘要:
为了有效提升油浸式变压器故障诊断的精度与速度,提出一种基于改进粒子群算法(IPSO)优化T-S型自适应模糊神经网络(T-S ANFIS)的油浸式变压器故障诊断模型;引入动态惯性权重和学习因子线性调整策略,并利用收敛域和欧式距离判别雷同粒子,以克服粒子群算法易早熟、后期易陷入局部最优的问题;接着通过IPSO对T-S ANFIS的前提参数进行优化,提高网络的收敛速度;最后通过仿真实验验证基于IPSO优化T-S ANFIS的变压器故障诊断模型效果,结果表明所构建模型的故障诊断最优准确率约为98%,与ANFIS及PSO-ANFIS模型相比具有较高的故障诊断精度及效率。
推荐文章
基于改进PSO-SVM算法的油浸式变压器故障诊断
粒子群算法
支持向量机
变压器
故障诊断
基于改进粒子群优化XGBoost的变压器故障诊断方法
变压器
故障诊断
极端梯度提升
粒子群算法
无编码比值
用于变压器DGA故障诊断的改进PSO优化SVM算法研究
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
基于组合核相关向量机和量子粒子群优化算法的变压器故障诊断方法
变压器
故障诊断
量子粒子群优化
相关向量机
组合核函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子群优化T-S ANFIS算法的诊断油浸式变压器故障研究
来源期刊 计算机测量与控制 学科
关键词 油浸式变压器 改进粒子群 自适应模糊神经网络 故障诊断 算法优化
年,卷(期) 2024,(10) 所属期刊栏目 测试与故障诊断
研究方向 页码范围 33-39
页数 7页 分类号
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2023.10.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2024(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
油浸式变压器
改进粒子群
自适应模糊神经网络
故障诊断
算法优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导