隐私保护是当前数据挖掘领域中一个十分重要的研究问题,其目标是要在不精确访问真实原始数据的条件下,得到准确的模型和分析结果.为了提高对隐私数据的保护程度和挖掘结果的准确性,提出一种有效的隐私保护关联规则挖掘方法.首先将数据干扰和查询限制这两种隐私保护的基本策略相结合,提出了一种新的数据随机处理方法,即部分隐藏的随机化回答(randomized response with partial hiding,简称RRPH)方法,以对原始数据进行变换和隐藏.然后以此为基础,针对经过RRPH方法处理后的数据,给出了一种简单而又高效的频繁项集生成算法,进而实现了隐私保护的关联规则挖掘.理论分析和实验结果均表明,基于RRPH的隐私保护关联规则挖掘方法具有很好的隐私性、准确性、高效性和适用性.