基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
应用带收缩因子的粒子群优化算法训练神经网络的权值矩阵,使神经网络的收敛速度大大提高,避免了其陷入局部最优解的缺陷;根据振动实验室齿轮箱实验数据,分析研究故障信号的特点,提取相应的特征参数,应用训练后的神经网络诊断齿轮箱的故障,实验表明故障诊断率较高.
推荐文章
基于多重分形和PSO-SVM的齿轮箱故障诊断
齿轮箱
分形理论
多重分形
PSO-SVM
故障诊断
带偏差单元递归神经网络齿轮箱故障诊断
坦克传动系统
齿轮箱
故障诊断
递归神经网络
基于LMD近似熵和PSO-ELM的齿轮箱故障诊断
齿轮箱
局域均值分解
近似熵
PSO-ELM
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 带收缩因子的PSO算法在齿轮箱故障诊断中的应用
来源期刊 机械工程与自动化 学科 工学
关键词 粒子群优化算法 神经网络 故障诊断
年,卷(期) 2006,(6) 所属期刊栏目 质量监测与故障诊断
研究方向 页码范围 52-54
页数 3页 分类号 TP206+.3|TP183
字数 1549字 语种 中文
DOI 10.3969/j.issn.1672-6413.2006.06.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘宏侠 中北大学机械工程与自动化学院 359 2630 23.0 34.0
2 马清峰 中北大学机械工程与自动化学院 4 52 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (43)
参考文献  (3)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子群优化算法
神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程与自动化
双月刊
1672-6413
14-1319/TH
大16开
太原市胜利街228号
22-117
1972
chi
出版文献量(篇)
9123
总下载数(次)
41
总被引数(次)
29895
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导