基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
遗传神经网络是利用遗传算法优化连接权值代替梯度下降法求解的方法,在遗传算法进化的过程中加入模拟退火算法,同时具有优秀的全局寻优能力和局部搜索能力,不仅能够提高运算收敛的速度和效率,而且可以有效避免出现早熟现象,防止陷入局部最优,同时性能也很稳定,完全能满足实时系统对精度和速度的要求.研究了遗传神经网络分别在复制、交叉和变异后应用模拟退火算子进行优化的方法,并且比较了三者在遗传神经网络优化中性能的优劣.
推荐文章
遗传算法与模拟退火算法在神经网络优化中的性能分析
神经网络
优化
遗传算法
模拟退火
全局搜索
基于模拟退火算法改进的 BP神经网络算法
BP神经网络
样本选择
主动学习
模拟退火
基于KOHONEN神经网络的模拟退火算法
神经网络
模拟退火
广义优化
基于模拟退火遗传算法的RBF网络的优化
径向基函数网络
遗传算法
参数优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 模拟退火算法对遗传神经网络优化的性能分析
来源期刊 辽宁石油化工大学学报 学科 工学
关键词 遗传算法 模拟退火算法 遗传退火神经网络
年,卷(期) 2007,(3) 所属期刊栏目 计算机与自动化
研究方向 页码范围 67-70
页数 4页 分类号 TP391.41
字数 3256字 语种 中文
DOI 10.3969/j.issn.1672-6952.2007.03.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 纪玉波 辽宁石油化工大学计算机与通信工程学院 32 282 8.0 16.0
2 商贺平 辽宁石油化工大学计算机与通信工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (20)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(3)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传算法
模拟退火算法
遗传退火神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁石油化工大学学报
双月刊
1672-6952
21-1504/TE
大16开
辽宁省抚顺市望花区丹东路西段1号
8-257
1981
chi
出版文献量(篇)
2263
总下载数(次)
3
总被引数(次)
12790
论文1v1指导