AMSR-E被动微波传感器获取的亮温数据与MODIS陆表分类产品(MOD12)相结合,将全球陆表分为16类,并假设每种类型的地表在各个被动微波通道具有较一致的发射率,在此基础上针对每种陆表类型分别建立了陆表温度反演算法.在算法的建立过程中,为了避免混合像元以及冻土、积雪发射率不确定性带来的影响,仅对单一地表类型占90%以上以及MODIS陆表温度产品高于273K的被动微波像元进行回归.同时,考虑到降雨对回归结果的影响,在数据选择中加入了降雨判识,在被动微波亮温数据中除去了降雨像元.利用上述算法,用2004年1~10月的全球部分地区AMSR-E数据在MODIS陆表分类产品的基础上对每种地表类型分别进行了陆表温度反演,并与MODIS陆表温度产品进行对比,结果显示相关性较好,均方根误差为2~4 K.