通过讨论纯净语音分量的概率分布特征以及相邻分量间的统计相关特性,在自适应K-L变换(KLT,Karhunen-Loève Transform)域给出了一种新的语音信号统计模型,然后基于该信号模型,利用最大后验(MAP,Maximum a Posterior)估计理论提出了一种新型的单通道语音增强算法.该算法充分考虑到在KLT域相邻时刻语音分量间存在的相关信息,利用信号的高斯模型假设条件,以联合概率密度函数的形式将这种相关信息融合到MAP中,获得纯净语音分量的估计.算法不仅结构简单利于实现,且有效地避免了传统算法对语音分量估计的不足.仿真结果表明本文算法在客观和主观测试中都具有较好的语音增强效果.