基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过分析卡通与非卡通视频在视觉上的差异,对视频片断提取了MPEG-7描述子等8组视觉特征来构造卡通视频的特征空间;并将主动相关反馈技术引入到支撑向量机(SVM)算法中,设计了一种基于主动学习的卡通视频检测分类方法.利用大量实际视频片断所做的测试实验结果表明,该文选取的特征对卡通和非卡通视频有较好的区分能力;且与单纯的SVM算法以及传统相关反馈和SVM算法结合的方法相比,该文算法在检测性能上有较大的优势.
推荐文章
基于SVM邻域学习的视频目标检测方法
SVM模型
邻域学习
视频目标检测
统计学分析
一种基于SVM和主动学习的图像检索方法
图像检索
SVM
主动学习
K-means
代表性样本
关键性样本
一种基于质心的卡通角色自动匹配方法
动画
卡通角色
图形序列
质心
自动匹配
关键帧内插
一种基于ALO-SVM算法的入侵检测方法
入侵检测
数据处理
检测模型建立
蚁狮优化算法
支持向量机
分类测试
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于SVM主动学习的卡通视频检测方法
来源期刊 电子与信息学报 学科 工学
关键词 视频检测MPEG-7 支撑向量机 相关反馈 主动相关反馈
年,卷(期) 2007,(6) 所属期刊栏目 论文
研究方向 页码范围 1338-1342
页数 5页 分类号 TN919.8
字数 5930字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高新波 西安电子科技大学电子工程学院 176 3425 27.0 52.0
2 张娜 西安电子科技大学电子工程学院 13 28 3.0 4.0
3 田春娜 西安电子科技大学电子工程学院 8 62 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (7)
参考文献  (6)
节点文献
引证文献  (9)
同被引文献  (6)
二级引证文献  (2)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
视频检测MPEG-7
支撑向量机
相关反馈
主动相关反馈
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
教育部科学技术研究项目
英文译名:Key Project of Chinese Ministry of Education
官方网址:http://www.dost.moe.edu.cn
项目类型:教育部科学技术研究重点项目
学科类型:
论文1v1指导