基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将K-means算法引入到朴素贝叶斯分类研究中,提出一种基于K-means的朴素贝叶斯分类算法.首先用K-menas算法对原始数据集中的完整数据子集进行聚类,计算缺失数据子集中的每条记录与k个簇重心之间的相似度,把记录赋给距离最近的一个簇,并用该簇相应的属性均值来填充记录的缺失值,然后用朴素贝叶斯分类算法对处理后的数据集进行分类.实验结果表明,与朴素贝叶斯相比,基于K-means思想的朴素贝叶斯算法具有较高的分类准确率.
推荐文章
基于引力模型的朴素贝叶斯分类算法
分类算法
朴素贝叶斯
引力模型
遥感图像
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
一种新型加权朴素贝叶斯分类算法
数据挖掘
朴素贝叶斯
属性频率
基于属性约简的PLS加权朴素贝叶斯分类
加权朴素贝叶斯分类
属性约简
偏最小二乘回归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-means的朴素贝叶斯分类算法的研究
来源期刊 计算机技术与发展 学科 工学
关键词 朴素贝叶斯分类 k-means算法 缺失数据
年,卷(期) 2007,(11) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 33-35
页数 3页 分类号 TP301.6
字数 2362字 语种 中文
DOI 10.3969/j.issn.1673-629X.2007.11.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡学钢 合肥工业大学计算机与信息学院 314 3156 27.0 39.0
2 张亚萍 淮北煤炭师范学院物理系 8 55 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (13)
同被引文献  (15)
二级引证文献  (42)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(2)
  • 引证文献(0)
  • 二级引证文献(2)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(4)
  • 引证文献(2)
  • 二级引证文献(2)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(7)
  • 引证文献(2)
  • 二级引证文献(5)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(12)
  • 引证文献(2)
  • 二级引证文献(10)
2018(10)
  • 引证文献(2)
  • 二级引证文献(8)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
朴素贝叶斯分类
k-means算法
缺失数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导