基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
协同过滤是目前电子商务推荐系统中广泛应用的最成功的推荐技术,但面临严峻的用户评分数据稀疏性和推荐实时性挑战.针对上述问题,提出了基于领域最近邻的协同过滤推荐算法,以用户评分项并集作为用户相似性计算基础,将并集中的非目标用户区分为无推荐能力和有推荐能力两种类型;对于前一类用户不再计算用户相似性以改善推荐实时性,对于后一类用户则提出"领域最近邻"方法对并集中的未评分项进行评分预测,从而降低数据稀疏性和提高最近邻寻找准确性.实验结果表明,该算法能有效提高推荐质量.
推荐文章
基于评分支持度的最近邻协同过滤推荐算法
协同过滤
最近邻居
评分支持度
相似度
基于熵优化近邻选择的协同过滤推荐算法
协同过滤
近邻选择
相似性
巴氏系数
推荐权重
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
用户属性加权活跃近邻的协同过滤算法
协同过滤
相似度
用户属性
最近邻居集
活跃近邻集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于领域最近邻的协同过滤推荐算法
来源期刊 计算机研究与发展 学科 工学
关键词 协同过滤 推荐算法 领域最近邻 用户相似性 平均绝对误差
年,卷(期) 2008,(9) 所属期刊栏目 软件技术
研究方向 页码范围 1532-1538
页数 7页 分类号 TP311
字数 5944字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁昌勇 合肥工业大学管理学院 235 3624 32.0 48.0
2 马丽 西华师范大学商学院 26 148 7.0 11.0
3 李聪 合肥工业大学管理学院 16 143 4.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (690)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
推荐算法
领域最近邻
用户相似性
平均绝对误差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机研究与发展
月刊
1000-1239
11-1777/TP
大16开
北京中关村科学院南路6号
2-654
1958
chi
出版文献量(篇)
7553
总下载数(次)
35
总被引数(次)
164870
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导