基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用支持向量机回归算法(SVM)结合粒子群优化算法(PSO)建立了用于蒸发预测的PSO_SVM模型,用和田地区实测蒸发量对其进行拟合与预测,并与传统的最小二乘支持向量机(LS_SVM)的预测结果进行了对比,结果表明PSO_SVM预测蒸发量的精度要高于LS_SVM,说明该模型可以用于蒸发预测.
推荐文章
基于PSO_SVM_AdaBoost的煤层底板突水预测研究
煤层底板突水预测
主成分分析
粒子群优化算法
支持向量机
AdaBoost算法
PSO优化LS-SVM在模拟电路故障预测中的应用
LS-SVM
PPMCC
欧几里得距离
健康度
PSO
一种基于累加PSO-SVM的网络安全态势预测模型
网络安全
态势预测
累加预处理
支持向量机
粒子群算法
基于KPCA-SVM的预测模型在铀矿堆浸中的应用
累计铀浸出率
预测
核主成分分析
支持向量机
粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PSO_SVM模型在蒸发预测中的应用
来源期刊 黑龙江水专学报 学科 地球科学
关键词 支持向量机 粒子群 和田绿洲 蒸发预测
年,卷(期) 2009,(2) 所属期刊栏目 水利水电工程
研究方向 页码范围 8-10
页数 3页 分类号 P338.9
字数 2949字 语种 中文
DOI 10.3969/j.issn.2095-008X.2009.02.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈冰 西安理工大学西北水资源与环境生态教育部重点实验室 201 3070 30.0 42.0
2 黄领梅 西安理工大学西北水资源与环境生态教育部重点实验室 58 672 14.0 23.0
3 秦胜英 4 15 2.0 3.0
4 邵年华 西安理工大学西北水资源与环境生态教育部重点实验室 6 45 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (50)
参考文献  (3)
节点文献
引证文献  (8)
同被引文献  (34)
二级引证文献  (34)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(3)
  • 引证文献(1)
  • 二级引证文献(2)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(5)
  • 引证文献(1)
  • 二级引证文献(4)
2015(6)
  • 引证文献(2)
  • 二级引证文献(4)
2016(7)
  • 引证文献(1)
  • 二级引证文献(6)
2017(8)
  • 引证文献(0)
  • 二级引证文献(8)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
粒子群
和田绿洲
蒸发预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
黑龙江大学工程学报
季刊
2095-008X
23-1566/T
16开
哈尔滨市学府路74号
1972
chi
出版文献量(篇)
3181
总下载数(次)
5
总被引数(次)
10495
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导