作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
单一神经网络难以对复杂模型做出准确的预测,提出了一种并联型混合神经网络模型用于对复杂的系统进行预测,该模型由径向基函数网络、BP网络和控制模块组成.控制模块用于线性映射层,将两种单一神经网络的输出结合并得到最终的输出结果.详细地给出了混合模型的预测方法:首先,利用改进算法分别训练径向基函数网络和BP网络;其次,采用自适应遗传算法优化线性映射层以获得更好的预测精度;最后,利用两个实例比较单一神经网络和提出的混合网络的预测性能.实验表明,混合神经网络在预测精度上比单一网络具有更优的性能,同时,该混合模型为复杂系统提供了一种通用的预测工具.
推荐文章
神经网络模型在TDNS准则中的应用研究
Neal-Smith时域准则
神经网络
驾驶员诱发振荡
仿真
基于神经网络的铝电解混合控制模型研究
神经网络
智能控制
铝电解
时间序列
灰色补偿神经网络及其应用研究
灰色系统
神经网络
灰色补偿神经网络
证券市场灰色神经网络组合预测模型应用研究
神经网络
灰色理论
灰色神经网络
组合预测
证券市场
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 并联混合神经网络模型及应用研究
来源期刊 计算机工程与应用 学科 工学
关键词 径向基函数 BP神经网络 混合网络模型 数据预测 线性映射
年,卷(期) 2009,(21) 所属期刊栏目 工程与应用
研究方向 页码范围 218-221
页数 4页 分类号 TP311
字数 4073字 语种 中文
DOI 10.3778/j.issn.1002-8331.2009.21.063
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹云忠 四川农业大学信息与工程技术学院 14 61 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (16)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
径向基函数
BP神经网络
混合网络模型
数据预测
线性映射
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导