基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
中心和边界是类别分布的重要特征.利用训练样本类别分布特征,提出了一种基于类别分布特征的快速文本分类算法.依据类别分布特征调整文本与类别的相似度,克服了数据集类别间样本分布不均衡和类别中样本密度不均的缺点,提高分类的性能.实验结果表明,该算法提高了文本分类的效果,显示出了较好的鲁棒性,并显著提高了文本分类效率.
推荐文章
文本分类中基于位置和类别信息的一种特征降维方法
文本分类
特征选择
特征降维
位置加权
类别分布
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
采用类别相似度聚合的关联文本分类方法
文本分类
关联规则
类别相似度
聚合
基于自身特征扩展的短文本分类方法
短文本
稀疏
信号弱
扩展
离散度
相关度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于类别分布特征的快速文本分类方法
来源期刊 计算机工程与设计 学科 工学
关键词 文本挖掘 文本分类 分布特征 快速分类 信息检索
年,卷(期) 2009,(5) 所属期刊栏目 计算机应用
研究方向 页码范围 1267-1269,1281
页数 4页 分类号 TP18
字数 3521字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王士同 江南大学信息工程学院 528 3424 23.0 37.0
5 杨林波 江南大学信息工程学院 3 15 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (6)
同被引文献  (12)
二级引证文献  (12)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(4)
  • 引证文献(2)
  • 二级引证文献(2)
2012(5)
  • 引证文献(2)
  • 二级引证文献(3)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
文本挖掘
文本分类
分布特征
快速分类
信息检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导