原文服务方: 微电子学与计算机       
摘要:
在分析了文本中重要事件识别和文本分类方法的基础之上,提出了一种基于重要事件的文本分类方法.重点研究了该方法涉及到的两个关键技术:以重要事件表示文本和获取文本类别的模板.在中文事件语料CEC上,使用本文介绍的文本分类方法得到的平均准确率达到80%,而使用传统的以词为特征的文本分类方法得到的平均准确率为72%.
推荐文章
基于事件卷积特征的新闻文本分类
文本分类
事件
卷积神经网络
自然语言处理
文本分类中的特征选择方法
文本分类
特征选择
评估函数
基于大数据挖掘技术的文本分类研究
大规模文本数据
高维特征
大数据挖掘技术
文本分类器
分类精度
分类时间
文本分类技术研究
文本分类
文本模型
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于重要事件的文本分类方法研究
来源期刊 微电子学与计算机 学科
关键词 文本分类 文本表示 重要事件 SVM
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 6-9
页数 分类号 TP39
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李存华 淮海工学院计算机工程学院 95 723 15.0 22.0
2 仲兆满 淮海工学院计算机工程学院 30 190 8.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (156)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(3)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
文本表示
重要事件
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导