基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncertain variables can be embedded into the Banach space C[0, 1] × C[0, 1] isometrically and isomorphically, is developed. Based on this embedding theorem, each objective with uncertain coefficients can be transformed into two objectives with crisp coefficients. The solution of the original m-objectives optimization problem with uncertain coefficients will be obtained by solving the corresponding 2 m-objectives crisp optimization problem. The R & D project portfolio decision deals with future events and opportunities, much of the information required to make portfolio decisions is uncertain. Here parameters like outcome, risk, and cost are considered as uncertain variables and an uncertain bi-objective optimization problem with some useful constraints is developed. The corresponding crisp tetra-objective optimization model is then developed by embedding theorem. The feasibility and effectiveness of the proposed method is verified by a real case study with the consideration that the uncertain variables are triangular in nature.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Application analysis of novel purple sweet corn inbred line development for hybrid nutrient-rich fru
紫甜玉米
自交系
Smith-Hazel指数
一般配合力(GCA)
Line×Tester模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Uncertainty Theory Based Novel Multi-Objective Optimization Technique Using Embedding Theorem with Application to R &D Project Portfolio Selection
来源期刊 应用数学(英文) 学科 数学
关键词 Uncertainty Theory UNCERTAIN Variable EMBEDDING THEOREM α-Optimistic and α-Pessimistic Value R & D Project PORTFOLIO Selection
年,卷(期) 2010,(3) 所属期刊栏目
研究方向 页码范围 189-199
页数 11页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Uncertainty
Theory
UNCERTAIN
Variable
EMBEDDING
THEOREM
α-Optimistic
and
α-Pessimistic
Value
R
&
D
Project
PORTFOLIO
Selection
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导