基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文针对最大似然线性回归算法线性假设的缺点,将多项式回归方法用于模型自适应,构建了基于最大似然多项式回归的非线性模型自适应算法.该算法在对数谱域用多项式回归方法,逼近每个Mel子带上识别环境模型均值与训练环境模型均值之间的非线性关系.多项式系数通过EM算法和最大似然准则从识别环境下的少量自适应数据中估计.实验结果表明,二阶多项式就可以较好地逼近模型均值的非线性环境变换关系.在噪声补偿和说话人自适应实验中,最大似然多项式回归算法的误识率都明显低于最大似然线性回归算法.本文算法较好地克服了线性模型自适应算法线性假设的缺陷,可同时减小噪声,和说话人的改变或其它因素对语音识别系统的影响,尤其适合说话人和噪声的联合自适应.
推荐文章
基于多项式回归的预取技术的研究
多项式回归
预取技术
缓存技术
访问延迟
多项式回归校准结果的不确定度评定
多项式回归
校准
不确定度
高功率电磁环境中多级效应的多项式回归模型
电磁脉冲
高功率电磁环境
极大似然估计
多级效应评价
多项式回归
利用多项式回归确定测向系统中的方位角
多项式回归
测向
MUSIC算法
谱密度函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最大似然多项式回归的鲁棒语音识别
来源期刊 声学学报 学科 物理学
关键词
年,卷(期) 2010,(1) 所属期刊栏目
研究方向 页码范围 88-96
页数 9页 分类号 O4
字数 8293字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴镇扬 东南大学信息科学与工程学院 167 1889 20.0 37.0
2 吕勇 东南大学信息科学与工程学院 6 37 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (16)
参考文献  (17)
节点文献
引证文献  (13)
同被引文献  (6)
二级引证文献  (3)
1977(2)
  • 参考文献(1)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(5)
  • 参考文献(2)
  • 二级参考文献(3)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(3)
  • 二级参考文献(2)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(3)
  • 引证文献(3)
  • 二级引证文献(0)
2012(4)
  • 引证文献(4)
  • 二级引证文献(0)
2013(4)
  • 引证文献(4)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
引文网络交叉学科
相关学者/机构
期刊影响力
声学学报
双月刊
0371-0025
11-2065/O4
大16开
北京市北四环西路21号
2-181
1964
chi
出版文献量(篇)
2139
总下载数(次)
5
总被引数(次)
26571
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导