基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In monitoring systems, multiple sensor nodes can detect a single target of interest simultaneously and the data collected are usually highly correlated and redundant. If each node sends data to the base station, energy will be wasted and thus the network energy will be depleted quickly. Data aggregation is an important paradigm for compressing data so that the energy of the network is spent efficiently. In this paper, a novel data aggregation algorithm called Redundancy Elimination for Accurate Data Aggregation (READA) has been proposed. By exploiting the range of spatial correlations of data in the network, READA applies a grouping and compression mechanism to remove duplicate data in the aggregated set of data to be sent to the base station without largely losing the accuracy of the final aggregated data. One peculiarity of READA is that it uses a prediction model derived from cached values to confirm whether any outlier is actually an event which has occurred. From the various simulations conducted, it was observed that in READA the accuracy of data has been highly preserved taking into consideration the energy dissipated for aggregating the data
推荐文章
基于USB2.0的高象素CMOS Sensor疵点检测系统
USB2.0
疵点
图像处理
检测
ZigBee协议栈wireless UART模板网络自启动的实现
ZigBee协议栈
绑定
网络自启动
wireless UART
Wireless-LAN安全及认证方法的研究与分析
无线局域网
安全机制
认证方法
可扩展认证协议
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 READA: Redundancy Elimination for Accurate Data Aggregation in Wireless Sensor Networks
来源期刊 无线传感网络(英文) 学科 医学
关键词 Sensor Networks DATA AGGREGATION DATA Compression EVENT Detection REDUNDANCY ELIMINATION
年,卷(期) 2010,(4) 所属期刊栏目
研究方向 页码范围 300-308
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Sensor
Networks
DATA
AGGREGATION
DATA
Compression
EVENT
Detection
REDUNDANCY
ELIMINATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线传感网络(英文)
月刊
1945-3078
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
358
总下载数(次)
0
总被引数(次)
0
论文1v1指导