基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在软测量建模问题中为了提高模型的估计精度,通常需要将原始数据集分类,以构造多个子模型.数据分类中利用朴素贝叶斯分类器简单高效的优点,首先对连续的类变量进行类别范围划分,然后用概率论中的"3σ"规则对连续的属性变量离散.可以消除训练样本中干扰数据的影响,利用遗传算法从训练样本集中优选样本.对连续变量的离散和样本的优选作为对数据的预处理,预处理后的训练样本构建贝叶斯分类器.通过对UCI数据集和双酚A生产过程在线监测数据集的实验仿真,实验结果表明,遗传算法优选样本集的"3σ"规则朴素贝叶斯分类方法比其它方法有更高的分类精度.
推荐文章
基于贝叶斯分类器的主题爬虫研究
贝叶斯
分类器
主题爬虫
主题相关度
基于多重判别分析的朴素贝叶斯分类器
朴素贝叶斯
TAN分类器
多重判别分析
DANB分类器
基于朴素贝叶斯分类器的硬件木马检测方法
侧信道分析
硬件木马
朴素贝叶斯分类器
性能比对
灵活的增强朴素贝叶斯分类器
贝叶斯网
朴素贝叶斯分类器
树增强朴素贝叶斯分类器
最小描述长度准则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于"3σ"规则的贝叶斯分类器
来源期刊 计算机仿真 学科 工学
关键词 连续型变量 条件概率密度 遗传算法
年,卷(期) 2010,(3) 所属期刊栏目 仿真方法与算法
研究方向 页码范围 94-97
页数 4页 分类号 TP274
字数 3727字 语种 中文
DOI 10.3969/j.issn.1006-9348.2010.03.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨慧中 江南大学通信与控制工程学院 228 1844 20.0 33.0
2 周开武 江南大学通信与控制工程学院 3 18 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (6)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (5)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(5)
  • 引证文献(1)
  • 二级引证文献(4)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
连续型变量
条件概率密度
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
总被引数(次)
127174
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导