作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对反浮选过程中浮选槽液位指标难以建立精确的数学模型、常规检测方法不能有效控制问题,提出一种将粗糙集与BP神经网络理论相结合方法[1],建立反浮选液位软测量模型.从浮选过程积累的数据中获取过程知识,通过粗糙集属性约简对训练样本数据进行处理,根据结果确定BP网络的输入、输出、隐层神经元数,从得到的优化设定自动更新浮选槽液位控制回路的设定值,避免了人工控制的不稳定性和不精确性.此方法应用于某浮选厂,满足了液位预测要求的精度,在液位控制、经济指标提高及浮选过程稳定等方面取得了明显的效果.
推荐文章
基于灰色粗糙集与BP神经网络的设备故障预测
灰色关联分析
粗糙集
BP神经网络
约简
故障预测
基于粗糙集神经网络的燃煤发热量预测模型
粗糙集
约简
神经网络
发热量
基于粗糙集模糊神经网络的爆破振动危害预测
爆炸力学
危害预测
粗糙集
爆破振动
模糊神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粗糙集-BP神经网络的浮选槽液位预测
来源期刊 辽宁科技大学学报 学科 工学
关键词 浮选槽液位 粗糙集 BP神经网络 模型预测
年,卷(期) 2010,(5) 所属期刊栏目
研究方向 页码范围 525-529
页数 分类号 TD923
字数 3720字 语种 中文
DOI 10.3969/j.issn.1674-1048.2010.05.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张勇 辽宁科技大学电子与信息工程学院 22 178 7.0 12.0
2 刘潭 辽宁科技大学电子与信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (100)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (6)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
浮选槽液位
粗糙集
BP神经网络
模型预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁科技大学学报
双月刊
1674-1048
21-1555/TF
大16开
辽宁省鞍山市高新技术产业开发区千山路185号
1979
chi
出版文献量(篇)
2893
总下载数(次)
6
总被引数(次)
9608
论文1v1指导